Overview of image noise reduction based on non-local mean algorithm
نویسندگان
چکیده
منابع مشابه
Circular Mean Filtering For Textures Noise Reduction
In this paper, a special preprocessing operations (filter) is proposed to decrease the effects of noise of textures. This filter using average of circular neighbor points (Cmean) to reduce noise effect. Comparing this filter with other average filters such as square mean filter and square median filter indicates that it provides more noise reduction and increases the classification accuracy...
متن کاملImproved Non-Local Means Algorithm Based on Dimensionality Reduction
Non-Local Means is an image denoising algorithm based on patch similarity. It compares a reference patch with the neighboring patches to find similar patches. Such similar patches participate in the weighted averaging process. Most of the computational time for Non-Local Means is consumed to measure patch similarity. In this thesis, we have proposed an improvement where the image patches are pr...
متن کاملNon-local Mean-shift Filter for the Reduction of Multiplicative Noise in Digital Images
In this paper a new method for the reduction of multiplicative noise in digital images is described. The proposed algorithm is a modification of the Mean-Shift (MS) filter which is based on the concept of the Non-Local Means (NLM) denoising. The proposed algorithm does not focus on single pixels only, as in the case of the mean-shift technique, but also on their neighborhoods. The performance o...
متن کاملHyperspectral Image Mixed Noise Reduction Based on Improved K-svd Algorithm
We propose an algorithm for mixed noise reduction in Hyperspectral Imagery (HSI). The hyperspectral data cube is considered as a three order tensor. These tensors give a clear view about both spatial and spectral modes. The HSI provides ample spectral information to identify and distinguish spectrally unique materials, thus they are spectrally over determined. Tensor representation is three ord...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATEC Web of Conferences
سال: 2018
ISSN: 2261-236X
DOI: 10.1051/matecconf/201823203029